39 research outputs found

    Light amplification without stimulated emission: Beyond the standard quantum limit to the laser linewidth

    Get PDF
    The standard quantum limit to the linewidth of a laser for which the gain medium can be adiabatically eliminated is l(0) = K/2 (n) over bar Here K is the intensity damping rate and (n) over bar the mean photon number. This contains equal contributions from the loss and gain processes, so that simple arguments which attribute the linewidth wholly to phase noise from spontaneous gain are wrong. I show that an unstimulated gain process actually introduces no phase noise, so that the ultimate quantum limit to the linewidth comes from the loss alone and is equal to l(ult) = K/4 (n) over bar. I investigate a number of physical gain mechanisms which attempt to achieve gain without phase noise: a linear atom-field coupling with a finite interaction time, a nonlinear atom-field coupling, and adiabatic photon transfer using a counterintuitive pulse sequence. The first at best reaches the standard limit l(0), the second reaches 3/4l(0), and the third reaches the ultimate limit of l(ult)= 1/2l(0). [S1050-2947(99)03711-7]

    Bilobalide modulates serotonin-controlled behaviors in the nematode Caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysfunctions in the serotonergic system have been implicated in several neurological disorders such as depression. Elderly individuals who have been diagnosed with clinical depression show elevated cases of neurodegenerative diseases. This has led to suggestions that modulating the serotonin (5-HT) system could provide an alternative method to current therapies for alleviating these pathologies. The neuroprotective effects of bilobalide <it>in vitro </it>have been documented. We aim to determine whether bilobalide affects the 5-HT system in the nematode <it>C. elegans</it>. The wild type worms, as well as well-characterized 5-HT mutants, were fed with bilobalide in a range of concentrations, and several 5-HT controlled behaviors were tested.</p> <p>Results</p> <p>We observed that bilobalide significantly inhibited 5-HT-controlled egg-laying behavior in a dose-dependent manner, which was blocked in the 5-HT receptor mutants (<it>ser-4, mod-1</it>), but not in the 5-HT transporter (<it>mod-5</it>) or synthesis (<it>tph-1</it>) mutants. Bilobalide also potentiated a 5-HT-controlled, experience-dependent locomotory behavior, termed the enhanced slowing response in the wild type animals. However, this effect was fully blocked in 5-HT receptor <it>mod-1 </it>and dopamine defective <it>cat-2 </it>mutants, but only partially blocked in <it>ser-4 </it>mutants. We also demonstrated that acetylcholine transmission was inhibited in a transgenic <it>C. elegans </it>strain that constitutively expresses Aβ, and bilobalide did not significantly affect this inhibition.</p> <p>Conclusion</p> <p>These results suggest that bilobalide may modulate specific 5-HT receptor subtypes, which involves interplay with dopamine transmission. Additional studies for the function of bilobalide in neurotransmitter systems could aid in our understanding of its neuroprotective properties.</p

    Chronic NMDA administration to rats increases brain pro-apoptotic factors while decreasing anti-Apoptotic factors and causes cell death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic <it>N</it>-Methyl-d-aspartate (NMDA) administration to rats is reported to increase arachidonic acid signaling and upregulate neuroinflammatory markers in rat brain. These changes may damage brain cells. In this study, we determined if chronic NMDA administration (25 mg/kg i.p., 21 days) to rats would alter expression of pro- and anti-apoptotic factors in frontal cortex, compared with vehicle control.</p> <p>Results</p> <p>Using real time RT-PCR and Western blotting, chronic NMDA administration was shown to decrease mRNA and protein levels of anti-apoptotic markers Bcl-2 and BDNF, and of their transcription factor phospho-CREB in the cortex. Expression of pro-apoptotic Bax, Bad, and 14-3-3ζ was increased, as well as Fluoro-Jade B (FJB) staining, a marker of neuronal loss.</p> <p>Conclusion</p> <p>This alteration in the balance between pro- and anti-apoptotic factors by chronic NMDA receptor activation in this animal model may contribute to neuronal loss, and further suggests that the model can be used to examine multiple processes involved in excitotoxicity.</p

    Trinta anos de sintaxe gerativa no Brasil

    Full text link

    Stability of phospholipase D in primary astrocytes

    No full text
    Induction of expression and proteolytic breakdown of phospholipase D (PLD) isoforms in primary astrocyte cultures have been investigated. Astrocytes express both PLD1 and 2 and are dependent on PLD activity for cell proliferation [K. Kotter, J. Klein, J. Neurochem. 73 (1999) 2517]. Competitive RT-PCR analysis demonstrated a higher level of PLD1 mRNA than PLD2 mRNA (8.9 vs. 0.9 amol/mug RNA, respectively). Treatment of astroglial cultures with the phorbol ester, 4beta-phorbol-12beta,13alpha-dibutyrate (0.1 muM), for 24-48 h selectively induced PLD1b but not PLD1a or 2 expression as shown by PCR and Western blot; the effect was sensitive to Go 6976. In cells transiently permeabilized with streptolysin-O, antisense oligonucleotides directed against PLD1 or 2 entered the cytoplasm as shown by immunofluorescence experiments but did not affect astroglial proliferation within 2-6 days. Treatment of the cultures with cycloheximide revealed that PLD1 and 2 proteins had biological half-lives of 2 3 days (PLD2) and 46 days (PLD1), respectively. It has been concluded that astroglial PLD1b is up-regulated by phorbol esters via protein kinase C activation. Down-regulation of PLD isoforms is prevented by extended biological half-lives of the PLD proteins. (C) 2002 Elsevier Science (USA). All rights reserved.X115sciescopu
    corecore